Generalized Discriminant Analysis algorithm for feature reduction in Cyber Attack Detection System
نویسندگان
چکیده
This Generalized Discriminant Analysis (GDA) has provided an extremely powerful approach to extracting non-linear features. The network traffic data provided for the design of intrusion detection system always are large with ineffective information, thus we need to remove the worthless information from the original high dimensional database. To improve the generalization ability, we usually generate a small set of features from the original input variables by feature extraction. The conventional Linear Discriminant Analysis (LDA) feature reduction technique has its limitations. It is not suitable for non-linear dataset. Thus we propose an efficient algorithm based on the Generalized Discriminant Analysis (GDA) feature reduction technique which is novel approach used in the area of cyber attack detection. This not only reduces the number of the input features but also increases the classification accuracy and reduces the training and testing time of the classifiers by selecting most discriminating features. We use Artificial Neural Network (ANN) and C4.5 classifiers to compare the performance of the proposed technique. The result indicates the superiority of algorithm. Keywords-Linear Discriminant Analysis, Generalized Discriminant Analysis, Artificial Neural Network, C4.5.
منابع مشابه
Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملFeature Reduction for Intrusion Detection Using Linear Discriminant Analysis
Intrusion detection is one of core technologies of computer security. It is required to protect the security of computer network systems. Most of existing IDs use all features in the network packet to look for known intrusive patterns. Some of these features are irrelevant or redundant. A well-defined feature extraction algorithm makes the classification process more effective and efficient. Th...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملA Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors
Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0911.0787 شماره
صفحات -
تاریخ انتشار 2009